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1 Introduction

I decided to brush up my knowledge on the math behind artificial neural networks, and these are the
notes that I’ve taken along the way.

The appendix contains a collection of notations, definitions, and theorems from the fields of linear
algebra and calculus that are used throughout this document.

2 License

This work is licensed under a Creative Commons “Attribution-ShareAlike
4.0 International” license.
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3 Neurons and Neural Networks

3.1 Neuron

An artificial neuron is a mathematical model that captures the behaviour of a real, biological brain
cell called a ”neuron”.

Input 1

Input 2 Neuron

Input 3

w1

w2

w3

Figure 1: A neuron with 3 input connections with various weights, and 2 output connections.

A real neuron may have incoming connections from other neurons and sensing organs, and outgoing
connections to other neurons, muscles, etc. Depending on its inner state and the signals that it receives
from its inputs, a neuron may or may not send a signal to its outputs, and if it does send a signal,
the strength of that can also vary. The strength of the outgoing signal is called the ”activation” level
of the neuron.

A mathematical neuron’s activation is represented by a number, a ∈ R.
For a neuron with no incoming connections (called an ”input” neuron, also known as ”feature”),

the activation is determined by the raw input data, for example, a single pixel’s luminosity level in a
photo, scaled to the [0, 1] ⊂ R interval.

For neurons with n ∈ N+ incoming connections, the activation is calculated as a function of the
sum of the neuron’s own bias parameter b ∈ R and the weighted sum of the activations of all the
neurons from which an incoming connection to this neuron exists, with some function f : R → R
called the ”activation function” (a,w ∈ Rn):

a = f

(
b+

n∑
k=0

wk · ak

)
(1)

The weights and biases for a collection of neurons are usually calculated by a training algorithm,
which, based on the derivative of the activation function, will arrange the parameter values so that
for a given set of input activations, the neurons will produce the desired output activations.

3.1.1 Common activation functions and their derivatives

Depending on the problem to solve, there are various activation functions to chose from. With β, γ ∈ R
(either of which may be a constant or a parameter that is learned along with the weights and biases),
the options include:

3.1.1.1 Threshold function

Threshold(x) =

{
1 if x > 0

0 if x ≤ 0
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Note: Threshold(x) is not differentiable at x = 0, and its derivative is 0 elsewhere.

−6 −4 −2 2 4 6

0.2

0.4

0.6

0.8

1

Figure 2: Plot of the Threshold(x) function.

3.1.1.2 Sign function

Sign(x) =

{
1 if x > 0

−1 if x ≤ 0

Note: Sign(x) is not differentiable at x = 0, and its derivative is 0 elsewhere.

−6 −4 −2 2 4 6

−1

−0.5

0.5

1

Figure 3: Plot of the Sign(x) function.

3.1.1.3 Sigmoid function Also known as Logistic Curve. β is called the ”steepness”, and γ ̸= 0
(usually γ = 1):

σβ,γ(x) =
γ

1 + e−β·x σ′
β,γ(x) = β · σβ,γ(x) ·

(
1− 1

γ
· σβ,γ(x)

)

−6 −4 −2 2 4 6

0.2

0.4

0.6

0.8

1

Figure 4: Plot of the σ1,1(x) function.

Note: calculating the derivative involves a few tricks. First the function is rewritten using the fact
that for all β ∈ R, the eβ·x > 0 inequality holds:
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σβ,γ(x) =
γ

1 + e−β·x =
γ

1 + 1
eβ·x

=
γ

1 + 1
eβ·x

· 1 =
γ

1 + 1
eβ·x

· e
β·x

eβ·x
=

γ · eβ·x

eβ·x + 1

Then the derivative:

σ′
β,γ(x) =

(
γ · eβ·x

)′ · (eβ·x + 1
)
− γ · eβ·x ·

(
eβ·x + 1

)′
(eβ·x + 1)

2

=

(
γ · β · eβ·x

)
·
(
eβ·x + 1

)
− γ · eβ·x ·

(
β · eβ·x

)
(eβ·x + 1)

2

=
γ · β · e2·β·x + γ · β · eβ·x − γ · β · e2·β·x

(eβ·x + 1)
2

=
γ · β · eβ·x

(eβ·x + 1)
2

=
γ · β · eβ·x

eβ·x + 1
· 1

eβ·x + 1

=
γ · β · eβ·x

eβ·x + 1
· e

β·x + 1− eβ·x

eβ·x + 1

=
γ · β · eβ·x

eβ·x + 1
·
(
eβ·x + 1

eβ·x + 1
− eβ·x

eβ·x + 1

)
=

γ · β · eβ·x

eβ·x + 1
·
(
1− eβ·x

eβ·x + 1

)
= β · σβ,γ(x) ·

(
1− 1

γ
· σβ,γ(x)

)

3.1.1.4 ReLU function Rectified Linear Unit.

ReLU(x) = max(0, x) ReLU′(x) =

{
1 if x > 0

0 if x < 0

Note: ReLU(x) is not differentiable at x = 0, but when implementing a neural network, people
just arbitrarily choose the value of ReLU′(0) to be either 0 or 1.

−6 −4 −2 2 4 6

2

4

6

Figure 5: Plot of the ReLu(x) function.
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3.1.1.5 Parametric ReLU function

PReLUβ(x) =

{
x if x > 0

β · x if x ≤ 0
PReLU′

β(x) =

{
1 if x > 0

β if x < 0

−6 −4 −2 2 4 6

2

4

6

Figure 6: Plot of the PReLu0.05(x) function.

When β is chosen to be a small positive number, e.g. 0.01, then PReLU is also called ”leaky
ReLU”. A leaky ReLU can help mitigating the ”dying ReLU” problem (a form of the ”vanishing
gradient problem”), which arises when a ReLU neuron is pushed into a state in which it becomes
inactive for almost all inputs, so the training algorithm will no longer be able to get it out from that
state.

Note: PReLU(x) is not differentiable at x = 0, but when implementing a neural network, people
just arbitrarily chose the value of PReLU′(0) to be either β or 1.

3.1.1.6 SiLU function Sigmoid Linear Unit, also known as Swish function.

SiLUβ,γ(x) = x · σβ,γ(x) SiLU′
β,γ(x) = σβ,γ(x) ·

(
1 + x− 1

γ
· σβ,γ(x)

)

−6 −4 −2 2 4 6

2

4

6

Figure 7: Plot of the SiLU1,1(x) function.

3.1.1.7 ELU function Exponential Linear Unit. For 0 ≤ β:

ELUβ(x) =

{
x if x > 0

β · (ex − 1) if x ≤ 0
ELU′

β(x) =

{
1 if x > 0

β · ex if x ≤ 0

Note: strictly speaking, when β ̸= 1, then ELUβ(x) is not differentiable at x = 0.
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−6 −4 −2 2 4 6

2

4

6

Figure 8: Plot of the ELU1(x) function.

3.1.1.8 Softplus function Also known as SmoothReLU function. β is called the ”sharpness”:

Softplusβ,γ(x) =
γ

β
· ln(1 + eβ·x) Softplus′β,γ(x) = σβ,γ(x)

−6 −4 −2 2 4 6

2

4

6

Figure 9: Plot of the Softplus1,1(x) function.

3.1.1.9 Mish function

Mishβ(x) = x · tanh(Softplusβ,1(x))
Mish′β(x) = tanh(Softplusβ,1(x)) + x · σβ,1(x) · sech2

(
Softplusβ,1(x)

)
Where the tanh : R→ R and the sech : R→ R functions can be defined as:

tanh(x) =
e2·x − 1

e2·x + 1
sech(x) =

2

ex + e−x

−6 −4 −2 2 4 6

2

4

6

Figure 10: Plot of the Mish1(x) function.
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3.1.1.10 Squareplus function For 0 ≤ β:

Squareplusβ(x) =
x+

√
x2 + β

2
Squareplus′β(x) =

1

2
+

x

2 ·
√
x2 + β

−6 −4 −2 2 4 6

2

4

6

Figure 11: Plot of the Squareplus1(x) function.
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3.2 Neural network

Neurons are arranged in layers, the activations of the neurons in a layer are the inputs of the next
layer.

Let L ∈ N+ denote the number of non-input layers in a neural network.

Let n ∈ (N+)
L
denote the number of neurons in each layer of the network, and let n0 ∈ N+ denote

the number of input neurons (features).
For L ≥ k ∈ N, the a(k) ∈ Rnk vector represents the activations in the k-th layer; a(0) is the input

layer, a(L) is the output layer. Layers between the input and the output layer are called ”hidden
layers”. (The parenthesized superscript here is used for indexing the layers, and not for powers.)

The interpretation of the output layer depends on the problem that the network is supposed to
solve, and it may require extensive experimentation to see what works best. For example, a network
that recognizes handwritten digits may produce its output in a signle neuron, where a value in the
[0, 0.1] interval means 0, a value in the (0.1, 0.2] interval means 1, and so on, or it could produce its
output in 10 different neurons where the first one shows how much probability the network assigns to
the input image being a handwritten 0, the second one showing the probability of a handwritten 1,
and so on. (There could even be an 11th neuron which signals an unrecognized character.)

a
(1)
1 a

(2)
1 a

(3)
1

a
(0)
1 a

(1)
2 a

(2)
2 a

(3)
2 a

(4)
1

a
(0)
2 a

(1)
3 a

(2)
3 a

(3)
3 a

(4)
2

a
(0)
3 a

(1)
4 a

(2)
4 a

(3)
4

a
(1)
4 a

(2)
4 a

(3)
4

a
(2)
4

Figure 12: A neural network with 3 input neurons, 3 hidden layers, and 2 output neurons.

For L ≥ k ∈ N+, the W(k) ∈ Rnk×nk−1 matrix represents the weights of the connections from the
k − 1-th layer to the k-th layer, and the b(k) ∈ Rnk vector represents the biases in the k-th layer.

Let f (k)(x) for x ∈ Rnk denote the
[
f
(k)
j (xj)

]nk

j=1
∈ Rnk vector where f

(k)
j : R→ R is the function

that is used for calculating the activation of the j-th neuron in the k-th layer.
The activation of the k-th layer (where L ≥ k ∈ N+) can be calculated as:

a(k) = f (k)
(
W(k) · a(k−1) + b(k)

)
(2)
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3.2.1 Simplified notation

For L ≥ k ∈ N, let a(k)0 = 1, and if k > 0 then for nk ≥ j ∈ N+, let w
(k)
j,0 = b

(k)
j , and for nk−1 ≥ i ∈ N,

let w0,i = 1, and let f
(k)
0 = id, and let w0,0 = 0.

With this notation, equation 2 can be simplified:

a(k) = f (k)
(
W(k) · a(k−1)

)
(3)

3.2.2 Examples

3.2.2.1 Feed-forward network A network with no loops (backward connections).

3.2.2.2 Recurrent network A network with loops (backward connections).

3.2.2.3 Perceptron A single layer, single output (L = 1, n1 = 1) feed-forward network.

3.2.2.3.1 Majority function perceptron Tells if more than half ofits inputs are 1.
w1,j = 1 (n0 ≥ j ∈ N+) and b1 = n0

2 .

3.2.2.3.2 Linear separator With the simplified notation (3.2.1), the activation of the per-
ceptron can be written as:

a(1) = f
(
W(1) · a(0)

)
(4)

Since the W(1) · a(0) = 0 equation defines a hyperplane in n0 dimensions, a perceptron with f
being the threshold function (3.1.1.1) can be thought of as a classifier which separates inputs that lie
on one side of the plane from the inputs that lie on the other side.

A binary function (f : Rn → {0, 1} for some n ∈ N+) is linearly separable if its inputs that yield
1 can be separated from the inputs which yield 0 with a straight line (or plane, or hyperplane). For
example, the OR,AND : {0, 1}2 → {0, 1} functions are linearly separable:

OR(x, y) =

{
0 if x = y = 0

1 otherwise

AND(x, y) =

{
1 if x = y = 1

0 otherwise

But the XOR : {0, 1}2 → {0, 1} function is not linearly separable:

XOR(x, y) =

{
1 if (x, y) ∈ {(0, 1), (1, 0)}
0 otherwise

Note that a function which is not linearly separable in n ∈ N+ dimensions may be turned into a
linearly separable function by cleverly adding extra dimensions.
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4 Learning, gradient descent, backpropagation

Before the training of a neural network begins, all its weights and biases are initialized with random
values. The activation of the output layer is then calculated for a number of example inputs for which
the desired output is already known, and the weights and biases are adjusted so that the average
difference between the calculated and the desired outputs is minimized. (This is called ”supervised
learning”.)

The idea is to define an error function in terms of the weights and biases in the network, treating
the input activations like constants. If all the activation functions are differentiable, then this error
function is also differentiable, so its gradient for a given set of weigths and biases will tell the direction
and the rate of the fastest increase. Since the goal is to minimize the error, we will multiply the
gradient by −1 to get the direction of the fastest decrease, and use that to adjust the weights and
biases for each example input. As more and more adjustments are made for more and more examples,
the error function will hopefully converge towards a (local) minimum and thus, its gradient should
converge towards 0. (Hence the name ”gradient descent”.)

In some specific cases (e.g. Lipschitz-continuous convex functions), guaranteed convergence can
be proven and its speed can be calculated, but in practice, the error function rarely has such nice
properties, so experimentation tends to be more useful than attempting to produce formal theoretical
proofs.

(From now on, the differentiability of f
(k)
j is assumed for all j, k ∈ N+, k ≤ L, j ≤ nk.)

4.1 Error function

(Also known as Cost function.)
Let y ∈ RnL denote the expected output activations for a given a(0) ∈ Rn0 example input. One

way to define an error function for this single example input is the following (where C : Rn0 → R):

C
(
a(0)

)
=

1

2
·
∥∥∥a(L) − y

∥∥∥ 2

2

=
1

2
·

√√√√ nL∑
j=1

(
a
(L)
j − yj

)22

=
1

2
·

nL∑
j=1

(
a
(L)
j − yj

)2
=

nL∑
j=1

1

2
·
(
a
(L)
j − yj

)2
(5)

4.1.1 Gradient

To find ∇C, we need the partial derivatives for each w
(k)

u(k),v(k−1) (for k, u
(k), v(k−1) ∈ N, 1 ≤ k ≤ L, 1 ≤

u(k) ≤ nk, v
(k−1) ≤ nk−1).

4.1.1.1 Notation

4.1.1.1.1 ∆
(k)
j For a given L ≥ k ∈ N+ and nk ≥ j ∈ N and a(0) ∈ Rn0 , let

∆
(k)
j = f

(k)
j

′
(

nk−1∑
i=0

w
(k)
j,i · a

(k−1)
i

)
(6)

and
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∆(k) =
[
∆

(k)
j

]nk

j=0
=



∆
(k)
0

∆
(k)
1

∆
(k)
2
...

∆
(k)
nk


(7)

Note:

∆
(k)
0 = f

(k)
0

′
(

nk−1∑
i=0

w
(k)
j,i · a

(k−1)
i

)
= id′

(
nk−1∑
i=0

w
(k)
0,i · a

(k−1)
i

)
= 1 (8)

4.1.1.1.2 f (k)
′
(x) For a given L ≥ k ∈ N+ and x ∈ Rnk :

f (k)
′
(x) =

[
f
(k)
j

′
(xj)

]nk

j=0
=



f
(k)
0

′
(x0)

f
(k)
1

′
(x1)

f
(k)
2

′
(x2)
...

f
(k)
nk

′
(xnk

)


(9)

4.1.1.2 Output layer Partial derivatives using equation 5 (u, v ∈ N, 1 ≤ u ≤ nL, v ≤ nL−1):

∂

∂w
(L)
u,v

C
(
a(0)

)
=

∂

∂w
(L)
u,v

nL∑
j=1

1

2
·
(
a
(L)
j − yj

)2
=

nL∑
j=1

1

2
· ∂

∂w
(L)
u,v

(
a
(L)
j − yj

)2

=

nL∑
j=1

1

2
· ∂

∂w
(L)
u,v

(
f
(L)
j

(
nL−1∑
i=0

w
(L)
j,i · a

(L−1)
i

)
− yj

)2

(10)

Since most of the terms in the outer summation don’t depend on w
(L)
u,v , they can be treated as

constants, and therefore their derivative is 0, and the only one that remains is where j = u:

∂

∂w
(L)
u,v

C
(
a(0)

)
=

1

2
· ∂

∂w
(L)
u,v

(
f (L)
u

(
nL−1∑
i=0

w
(L)
u,i · a

(L−1)
i

)
− yu

)2

(11)

Applying the chain rule (note that the a
(L−1)
i terms don’t depend on w

(L)
u,v either):

∂

∂w
(L)
u,v

C
(
a(0)

)
=
1

2
· 2 ·

(
f (L)
u

(
nL−1∑
i=0

w
(L)
u,i · a

(L−1)
i

)
− yu

)
· f (L)

u

′
(

nL−1∑
i=0

w
(L)
u,i · a

(L−1)
i

)
· a(L−1)

v (12)

Rearranging and shortening:

∂

∂w
(L)
u,v

C
(
a(0)

)
=
(
a(L)
u − yu

)
·∆(L)

u · a(L−1)
v (13)
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4.1.1.3 Last hidden layer Partial derivatives for the L − 1-th layer if L ≥ 2, for u, v ∈ N, 1 ≤
u ≤ nL−1, v ≤ nL−2, using equation 5:

∂

∂w
(L−1)
u,v

C
(
a(0)

)
=

∂

∂w
(L−1)
u,v

nL∑
j=1

1

2
·
(
a
(L)
j − yj

)2
=

nL∑
j=1

1

2
· ∂

∂w
(L−1)
u,v

(
a
(L)
j − yj

)2 (14)

Now all of the terms inside the summation depend on w
(L−1)
u,v , because a

(L)
j depends on it for all

nL ≥ j ∈ N+.

Using the chain rule, expanding a
(L)
j for a given nL ≥ j ∈ N+, and exploiting the fact that none of

the weights and biases in the output layer depend on the weights and biases in the last hidden layer:

1

2
· ∂

∂w
(L−1)
u,v

(
a
(L)
j − yj

)2
=

1

2
· 2 ·

(
a
(L)
j − yj

)
· ∂

∂w
(L−1)
u,v

a
(L)
j

=
(
a
(L)
j − yj

)
· ∂

∂w
(L−1)
u,v

f
(L)
j

(
nL−1∑
i=0

w
(L)
j,i · a

(L−1)
i

)

=
(
a
(L)
j − yj

)
· f (L)

j

′
(

nL−1∑
i=0

w
(L)
j,i · a

(L−1)
i

)
· ∂

∂w
(L−1)
u,v

(
nL−1∑
i=0

w
(L)
j,i · a

(L−1)
i

)

=
(
a
(L)
j − yj

)
·∆(L)

j ·

(
nL−1∑
i=0

w
(L)
j,i ·

∂

∂w
(L−1)
u,v

a
(L−1)
i

)
(15)

Since only a
(L−1)
u depends on w

(L−1)
u,v , most of the terms in the summation are 0 (because they are

multiplied by the derivative of a constant, which is 0), and the only one that remains is where i = u.
Continuing equation 15:

1

2
· ∂

∂w
(L−1)
u,v

(
a
(L)
j − yj

)2
=
(
a
(L)
j − yj

)
·∆(L)

j · w(L)
j,u ·

∂

∂w
(L−1)
u,v

a(L−1)
u (16)

Expanding a
(L−1)
u , and using the chain rule again:

∂

∂w
(L−1)
u,v

a(L−1)
u =

∂

∂w
(L−1)
u,v

f (L−1)
u

(
nL−2∑
m=0

w(L−1)
u,m · a(L−2)

m

)

=f (L−1)
u

′
(

nL−2∑
m=0

w(L−1)
u,m · a(L−2)

m

)
· ∂

∂w
(L−1)
u,v

(
nL−2∑
m=0

w(L−1)
u,m · a(L−2)

m

)

=∆(L−1)
u ·

(
nL−2∑
m=0

∂

∂w
(L−1)
u,v

w(L−1)
u,m · a(L−2)

m

) (17)

Since only one term in the summation depends on w
(L−1)
u,v (the one where m = v), most of the

terms are 0, because they are multiplied by the derivative of a constant, which is 0. Continuing
equation 17:

∂

∂w
(L−1)
u,v

a(L−1)
u = ∆(L−1)

u · ∂

∂w
(L−1)
u,v

w(L−1)
u,v · a(L−2)

v = ∆(L−1)
u · a(L−2)

v (18)
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Plugging this back into equation 16 and then that into equation 14:

∂

∂w
(L−1)
u,v

C
(
a(0)

)
=

nL∑
j=1

(
a
(L)
j − yj

)
·∆(L)

j · w(L)
j,u ·∆

(L−1)
u · a(L−2)

v (19)

4.1.1.4 In-between hidden layers Partial derivatives for the k-th layer for L ≥ 3 and L− 2 ≥
k ∈ N+ and u, v ∈ N, 1 ≤ u ≤ nk, v ≤ nk−1, using equation 5:

∂

∂w
(k)
u,v

C
(
a(0)

)
=

∂

∂w
(k)
u,v

nL∑
j=1

1

2
·
(
a
(L)
j − yj

)2
=

nL∑
j=1

1

2
· ∂

∂w
(k)
u,v

(
a
(L)
j − yj

)2
=

nL∑
j=1

1

2
· 2 ·

(
a
(L)
j − yj

)
· ∂

∂w
(k)
u,v

a
(L)
j

=

nL∑
j=1

(
a
(L)
j − yj

)
· ∂

∂w
(k)
u,v

f
(L)
j

(
nL−1∑
i1=0

w
(L)
j,i1
· a(L−1)

i1

)

=

nL∑
j=1

(
a
(L)
j − yj

)
·∆(L)

j ·

(
nL−1∑
i1=0

w
(L)
j,i1
· ∂

∂w
(k)
u,v

a
(L−1)
i1

)

=

nL∑
j=1

(
a
(L)
j − yj

)
·∆(L)

j ·

(
nL−1∑
i1=0

w
(L)
j,i1
· ∂

∂w
(k)
u,v

f
(L−1)
i1

(
nL−2∑
i2=0

w
(L−1)
i1,i2

· a(L−2)
i2

))

=

nL∑
j=1

(
a
(L)
j − yj

)
·∆(L)

j ·

(
nL−1∑
i1=0

w
(L)
j,i1
·∆(L−1)

i1
·

(
nL−2∑
i2=0

w
(L−1)
i1,i2

· ∂

∂w
(k)
u,v

a
(L−2)
i2

))

=

nL∑
j=1

nL−1∑
i1=0

(
a
(L)
j − yj

)
·∆(L)

j · w(L)
j,i1
·∆(L−1)

i1
·

(
nL−2∑
i2=0

w
(L−1)
i1,i2

· ∂

∂w
(k)
u,v

a
(L−2)
i2

)

=

nL∑
j=1

nL−1∑
i1=0

nL−2∑
i2=0

(
a
(L)
j − yj

)
·∆(L)

j · w(L)
j,i1
·∆(L−1)

i1
· w(L−1)

i1,i2
· ∂

∂w
(k)
u,v

a
(L−2)
i2

= . . .

(20)

Due to the chain rule and the commutativity of addition, the emerging pattern of introducing

∆
(l)
iL−l
·w(l)

iL−l,iL−l+1
terms (where l ∈ N+, k < l ≤ L) will continue as we go down to deeper and deeper

layers, expanding the activations. Eventually, we reach the layer immediately above the k-th layer,

where we need to find ∂

∂w
(k)
u,v

a
(k+1)
iL−(k+1)

:
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∂

∂w
(k)
u,v

a
(k+1)
iL−(k+1)

=
∂

∂w
(k)
u,v

f
(k+1)
iL−(k+1)

 nk∑
iL−k=0

w
(k+1)
iL−(k+1),iL−k

· a(k)iL−k


= f

(k+1)
iL−(k+1)

′

 nk∑
iL−k=0

w
(k+1)
iL−(k+1),iL−k

· a(k)iL−k

 · ∂

∂w
(k)
u,v

 nk∑
iL−k=0

w
(k+1)
iL−(k+1),iL−k

· a(k)iL−k


= ∆

(k+1)
iL−(k+1)

·
nk∑

iL−k=0

w
(k+1)
iL−(k+1),iL−k

· ∂

∂w
(k)
u,v

a
(k)
iL−k

= ∆
(k+1)
iL−(k+1)

·
nk∑

iL−k=0

w
(k+1)
iL−(k+1),iL−k

· ∂

∂w
(k)
u,v

f
(k)
iL−k

 nk−1∑
iL−k+1=0

w
(k)
iL−k,iL−k+1

· a(k−1)
iL−k+1


= ∆

(k+1)
iL−(k+1)

·
nk∑

iL−k=0

w
(k+1)
iL−(k+1),iL−k

·∆(k)
iL−k

· ∂

∂w
(k)
u,v

 nk−1∑
iL−k+1=0

w
(k)
iL−k,iL−k+1

· a(k−1)
iL−k+1


= ∆

(k+1)
iL−(k+1)

·
nk∑

iL−k=0

w
(k+1)
iL−(k+1),iL−k

·∆(k)
iL−k

·

 nk−1∑
iL−k+1=0

∂

∂w
(k)
u,v

w
(k)
iL−k,iL−k+1

· a(k−1)
iL−k+1


(21)

The only term which depends on w
(k)
u,v in the inner summation is the one where iL−k = u and

iL−k+1 = v, so the derivative of all the other terms is 0. This also makes the terms in the outer
summation equal to 0 where iL−k ̸= u, so we’re left with:

∂

∂w
(k)
u,v

a
(k+1)
iL−(k+1)

= ∆
(k+1)
iL−(k+1)

· w(k+1)
iL−(k+1),u

·∆(k)
u · ∂

∂w
(k)
u,v

w(k)
u,v · a(k−1)

v

= ∆
(k+1)
iL−(k+1)

· w(k+1)
iL−(k+1),u

·∆(k)
u · a(k−1)

v

(22)

Therefore the general form of equation 20 can be written as:

∂

∂w
(k)
u,v

C
(
a(0)

)
=

nL∑
j=1

nL−1∑
i1=0

. . .

nk+1∑
iL−(k+1)=0

(
a
(L)
j − yj

)
·∆(L)

j · w(L)
j,i1

·∆(L−1)
i1

· w(L−1)
i1,i2

...

·∆(k+1)
iL−(k+1)

· w(k+1)
iL−(k+1),u

·∆(k)
u · a(k−1)

v

(23)
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4.2 Basic backpropagation algorithm

As can be seen in equation 23, calculating the partial derivatives requires an exponentially growing
number of additions and multiplications as more and more layers are added to a network. Fortunately,

the values of the
(
a
(L)
j − yj

)
·∆(L)

j · w(L)
j,i1
·∆(L−1)

i1
· w(L−1)

i1,i2
· . . .∆(k)

iL−k
· w(k)

iL−k,iL−k+1 products can be

cached and reused for subsequent layers if we evaluate the activations across the network forward
(from the input layer towards the output layer), and then calculate the gradient backwards (from the
output layer towards the input layer). This backwards propagation of the error is the origin of the
name of this learning algorithm.

In theory, we should evaluate all the examples and use the average of their gradients to adjust the
network, then keep repeating this until we are satisfied with the network’s performance. (Such an
iteration is called an ”epoch”.) In practice, however, due to the huge amount of training data that
may be needed to train a network, the examples are usually grouped in small batches randomly, and
the network is adjusted for each batch instead of the whole set of examples. This way not all the steps
of the gradient descent will be optimal, but the overall learning time can be a lot shorter.

Also, the step size is usually adjusted with a parameter 0 < α ∈ R called the ”learning rate” or
”braveness”, which may vary over time. Initially the learning rate can be high (usually 0 < α < 0.3)
so that the network makes bigger steps towards the optimum, and later it can be reduced gradually
so that when the network is close to an optimum, the chance of overshooting can be minimized.

Another way to avoid overshooting may be to make the step size proportional to the length of the
gradient vector.

Algorithm 1 to 10 show the basic backpropagation training algorithm procedures with both ex-
panded and matrix-vector notation.

Algorithm 1 Train the network with the given set of examples. An example is an (x,y) pair where
x ∈ Rn0 is an example input, and y ∈ RnL is the desired output for x.

procedure Learn(examples)
α← initial learning rate
Initialize
repeat

batch← randomly chosen items from examples
ClearGradient
for (x,y) in batch do

Evaluate(x)
AdjustGradient(y)

end for
ApplyGradient(α)
α← new learning rate

until training is done
end procedure

The stopping criteria can be that a fixed number of epochs have run, or that the error has became
consistently acceptably low for most examples, or that the gradient (and thus, the step size) has
become so close to zero that the algorithm has basically reached a flat region from where it will no
longer move away any significantly.
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Algorithm 2 Initialize the network with random weights and biases.

procedure Initialize
for k ← 0 to L do

a
(k)
0 ← 1

d
(k)
0 ← 1

end for
for k ← 1 to L do

for i← 0 to nk−1 do

w
(k)
0,i ← 1

for j ← 1 to nk do

w
(k)
j,i ← random number

∇C(k)
j,i ← 0

end for
end for

end for
end procedure

Algorithm 3 Initialize the gradient that belongs to the current batch.

procedure ClearGradient
for k ← 1 to L do

for j ← 1 to nk do
for i← 0 to nk−1 do

∇C(k)
j,i ← 0

end for
end for

end for
end procedure

Algorithm 4 Algorithm 4 with matrix-vector notation.

procedure ClearGradient
for k ← 1 to L do
∇C(k) ← 0

end for
end procedure

Algorithm 5 Evaluate the given input and produce the result in the output layer.

procedure Evaluate(x)
for j ← 1 to n0 do

a
(0)
j ← xj

end for
for k ← 1 to L do

for j ← 1 to nk do

s
(k)
j ←

∑nk−1

i=0 w
(k)
j,i · a

(k−1)
i

a
(k)
j ← f

(k)
j

(
s
(k)
j

)
end for

end for
end procedure

19



Algorithm 6 Algorithm 5 with matrix-vector notation.

procedure Evaluate(x)
a(0) ← x
for k ← 1 to L do

s(k) ←W(k)a(k−1)

a(k) ← f (k)
(
s(k)
)

end for
end procedure

Algorithm 7 Calculate the gradient with error backpropagation for the given expected output (y ∈
RnL), and merge it into the gradient of the current batch.

procedure AdjustGradient(y)
for j ← 1 to nL do

d
(L)
j ←

(
yj − a

(L)
j

)
· f (L)

j

′ (
s
(L)
j

)
for i← 0 to nL−1 do

∇C(L)
j,i ← ∇C

(L)
j,i + d

(L)
j · a(L−1)

i

end for
end for
for k ← L− 1 to 1 do

for j ← 1 to nk do

d
(k)
j ←

(∑nk+1

i=0 d
(k+1)
i · w(k+1)

i,j

)
· f (k)

j

′ (
s
(k)
j

)
for i← 0 to nk−1 do

∇C(k)
j,i ← ∇C

(k)
j,i + d

(k)
j · a(k−1)

i

end for
end for

end for
end procedure

Algorithm 8 Algorithm 7 with matrix-vector notation.

procedure AdjustGradient(y)

d(L) ←
(
y − a(L)

)
⊙ f (L)′ (s(L)

)
∇C(L) ← ∇C(L) + d(L)

(
a(L−1)

)T
▷ matrix multiplication

for k ← L− 1 to 1 do

d(k) ←
((

W(k+1)
)T

d(k+1)
)
⊙ f (k)

′ (
s(k)
)

∇C(k) ← ∇C(k) + d(k)
(
a(k−1)

)T
▷ matrix multiplication

end for
end procedure
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Algorithm 9 Adjust the weights and biases of the network with the gradient of the current batch
and the given learning rate.

procedure ApplyGradient(α)
for k ← 1 to L do

for j ← 1 to nk do
for i← 0 to nk−1 do

w
(k)
j,i ← w

(k)
j,i − α · ∇C(k)

j,i

end for
end for

end for
end procedure

Algorithm 10 Algorithm 9 with matrix-vector notation.

procedure ApplyGradient(α)
for k ← 1 to L do

W(k) ←W(k) − α · ∇C(k)

end for
end procedure

4.3 Training and testing (validating)

The goal is usually not to have the network memorize all the training examples and then spit out
memorized outputs (known as ”overfitting”), but to produce acceptable output for unseen inputs as
well.

To measure how well the network performs for unseen inputs, and to see if any adjustments are
needed for the training process or the network’s architecture, the examples with the known outputs
are usually split into two subsets: the training data and the validation data (also known as test data).
Usually, the training data contains more elements than the validation data, e.g. with a 2 : 1 or a 3 : 1
ratio.

The learning algorithm is run exclusively for the training examples, and then the error is measured
against the validation examples, without making any further adjustments on the weights and biases.

Algorithm 11 is a modification of algorithm 1 in which the error for the training set is accumulated
in Et for each iteration, and the error for the validation set is accumulated in Ev.

4.3.1 Underfitting

When both Et and Ev remains high, that can indicate a problem called ”underfitting”. This can
occur when the network is too simple:

� it has too few input neurons,

� or it has too few neurons in too few layers,

� or too many weights and biases are close to zero (ie. too few neurons and features are actually
used, there are too few connections in the network),

� or just too few epochs have been run.

4.3.2 Overfitting, regularization

A symptom of overfitting is when Et is low, but Ev is significantly higher than Et, ie. when the
network performs well on the training set, but performs poorly on the validation set. It can indicate
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Algorithm 11 Modified version of algorithm 1 with validation.

procedure Learn(examples)
α← initial learning rate
Initialize
trainers← randomly chosen items from examples
validators← items from examples that are not in trainers
repeat

trainer batch← randomly chosen items from trainers
validator batch← randomly chosen items from validators
ClearGradient
CalculateGradient(trainer batch)
ApplyGradient(α)
Validate(validator batch)
α← new learning rate

until training is done
end procedure
procedure CalculateGradient(batch)

Et ← 0
for (x,y) in batch do

Evaluate(x)
AdjustGradient(y)
Et ← Et +

1
2 · ∥y − a(L)∥ 2

2

end for
end procedure
procedure Validate(batch)

Ev ← 0
for (x,y) in batch do

Evaluate(x)
Ev ← Ev +

1
2 · ∥y − a(L)∥ 2

2

end for
end procedure
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that the network is too complex. Mitigation techniques are called ”regularization”. They may be
applied only for the input layer, so the network will ignore some features and add more emphasis on
others, or to the entire network.

4.3.2.1 Norm-based regularization The idea of this technique is to put all the weights and
biases from all layers into a giant vector, and include its norm in the cost function with some weight.

Formally: let N denote the number of all weights and biases in the network. Let w ∈ RN be a

vector which contains all w
(k)
i,j weights and biases in the network for i, j, k ∈ N, 1 ≤ k ≤ L, 1 ≤ i ≤

nk, j ≤ nk−1. Let λ ∈ R be the regularization parameter. Then the regularized cost function with
some vector norm:

Cr

(
a(0)

)
= C

(
a(0)

)
+ λ · ∥w∥ (24)

Algorithm 12 incorporates norm based regularization into the calculation of the gradient.

Algorithm 12 Modified version of algorithm 7 with norm-based regularization.

procedure AdjustGradient(y)
for j ← 1 to nL do

d
(L)
j ←

(
yj − a

(L)
j

)
· f (L)

j

′ (
s
(L)
j

)
for i← 0 to nL−1 do

R← λ· Regularization(L, j, i)

∇C(L)
j,i ← ∇C

(L)
j,i + d

(L)
j · a(L−1)

i +R
end for

end for
for k ← L− 1 to 1 do

for j ← 1 to nk do

d
(k)
j ←

(∑nk+1

i=0 d
(k+1)
i · w(k+1)

i,j

)
· f (k)

j

′ (
s
(k)
j

)
for i← 0 to nk−1 do

R← λ· Regularization(k, j, i)

∇C(k)
j,i ← ∇C

(k)
j,i + d

(k)
j · a(k−1)

i +R
end for

end for
end for

end procedure

4.3.2.1.1 L1 regularization For L ≥ k ∈ N+ and u, v ∈ N, 1 ≤ u ≤ nk, v ≤ nk−1:

∂

∂w
(k)
u,v

CL1

(
a(0)

)
=

∂

∂w
(k)
u,v

C
(
a(0)

)
+

∂

∂w
(k)
u,v

λ · ∥w∥1

=
∂

∂w
(k)
u,v

C
(
a(0)

)
+

∂

∂w
(k)
u,v

λ ·
L∑

l=1

nl∑
j=1

nl−1∑
i=0

∣∣∣w(l)
j,i

∣∣∣
=

∂

∂w
(l)
u,v

C
(
a(0)

)
+ λ ·

L∑
l=1

nl∑
j=1

nl−1∑
i=0

∂

∂w
(k)
u,v

∣∣∣w(l)
j,i

∣∣∣
(25)

Most of the w
(l)
j,i terms don’t depend on w

(k)
u,v, therefore their derivative is 0, and the only one which

remains is the one which contains w
(k)
u,v:
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∂

∂w
(k)
u,v

CL1

(
a(0)

)
=

∂

∂w
(l)
u,v

C
(
a(0)

)
+ λ · ∂

∂w
(k)
u,v

∣∣∣w(k)
u,v

∣∣∣ (26)

Since a connection with zero weight does not contribute to the network’s complexity, we can
interpret |0|′ as 0:

|x|′ =


1 if x > 0

0 if x = 0

−1 if x < 0

(27)

In other words, we modify algorithm 7 so that for each C
(k)
j,i value of the gradient, we add or

subtract λ, depending on whether w
(k)
j,i is positive or negative.

Algorithm 13 implements L1 regularization for algorithm 12.

Algorithm 13 L1 regularization

function Regularization(k, j, i)

if w
(k)
j,i = 0 then
return 0

end if
if w

(k)
j,i > 0 then
return 1

end if
return −1

end function

4.3.2.1.2 L2 regularization To make calculating the partial derivatives cleaner, we apply a
slight modification to the regularization term: for L ≥ k ∈ N+ and u, v ∈ N, 1 ≤ u ≤ nk, v ≤ nk−1:

∂

∂w
(k)
u,v

CL1

(
a(0)

)
=

∂

∂w
(k)
u,v

C
(
a(0)

)
+

∂

∂w
(k)
u,v

λ · 1
2
· ∥w∥ 2

2

=
∂

∂w
(k)
u,v

C
(
a(0)

)
+

∂

∂w
(k)
u,v

λ · 1
2
·

√√√√ L∑
l=1

nl∑
j=1

nl−1∑
i=0

(
w

(l)
j,i

)22

=
∂

∂w
(k)
u,v

C
(
a(0)

)
+

∂

∂w
(k)
u,v

λ · 1
2
·

L∑
l=1

nl∑
j=1

nl−1∑
i=0

(
w

(l)
j,i

)2
=

∂

∂w
(l)
u,v

C
(
a(0)

)
+ λ · 1

2
·

L∑
l=1

nl∑
j=1

nl−1∑
i=0

∂

∂w
(k)
u,v

(
w

(l)
j,i

)2
(28)

Again, most of the w
(l)
j,i terms don’t depend on w

(k)
u,v, therefore their derivative is 0, and the only

one which remains is the one which contains w
(k)
u,v:
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∂

∂w
(k)
u,v

CL1

(
a(0)

)
=

∂

∂w
(l)
u,v

C
(
a(0)

)
+ λ · 1

2
· ∂

∂w
(k)
u,v

(
w(k)

u,v

)2
=

∂

∂w
(l)
u,v

C
(
a(0)

)
+ λ · 1

2
· 2 · w(k)

u,v

=
∂

∂w
(l)
u,v

C
(
a(0)

)
+ λ · w(k)

u,v

(29)

Algorithm 14 implements L2 regularization for algorithm 12.

Algorithm 14 L2 regularization

function Regularization(k, j, i)

return w
(k)
j,i

end function

4.3.2.2 Dropout regularization Overfitting might be the result of some neurons making mis-
takes that are covered up by the others, so neurons start to develop dependence on each other’s
mistakes and corrections. This is called ”complex co-adaptation”.

To make sure that neurons don’t depend on each other too much, this technique picks a certain
number of neurons in each layer for each training example, and nullifies their contributions to the
network, while making up for it by increasing the contribution of the remaining neurons.

A new evaluation procedure has to be introduced in algorithm 11, to be used only in the training
step, but not during validation.

With δ ∈ R, 0 ≤ δ < 1 denoting the ratio of neurons in each layer that are dropped, algorithm 15
to 19 extend algorithm 11 with dropout regularization (shown with both expanded and matrix-vector
notation).

Algorithm 15 Modified version of algorithm 11 with droput regularization.

procedure CalculateGradient(batch)
Et ← 0
for (x,y) in batch do

EvaluateWithDropout(x)
AdjustGradientWithDropout(y)
Et ← Et +

1
2 · ∥y − a(L)∥ 2

2

end for
end procedure
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Algorithm 16 Modified version of algorithm 5 with dropout regularization.

procedure EvaluateWithDropout(x)

r
(0)
0 ← 1
for j ← 1 to n0 do

r
(0)
j ← 0 with δ chance , 1

1−δ with 1− δ chance

a
(0)
j ← r

(0)
j · xj

end for
for k ← 1 to L do

r
(k)
0 ← 1
for j ← 1 to nk do

r
(k)
j ← 0 with δ chance , 1

1−δ with 1− δ chance

if k = L or r
(k)
j > 0 then

s
(k)
j ←

∑nk−1

i=0 w
(k)
j,i · a

(k−1)
i

a
(k)
j ← r

(k)
j · f (k)

j

(
s
(k)
j

)
else

s
(k)
j ← 0

a
(k)
j ← 0

end if
end for

end for
end procedure

Algorithm 17 Algorithm 16 with matrix-vector notation.

procedure EvaluateWithDropout(x)

r(0) ←
[
0 with δ chance , 1

1−δ with 1− δ chance
]n0

i=1

r
(0)
0 ← 1
a(0) ← r⊙ x
for k ← 1 to L do

if k = L then
s(k) ←W(k)a(k−1)

a(k) ← f (k)
(
s(k)
)

else

r(k) ←
[
0 with δ chance , 1

1−δ with 1− δ chance
]nk

i=1

r
(k)
0 ← 1
s(k) ← r(k) ⊙

(
W(k)a(k−1)

)
a(k) ← r(k) ⊙ f (k)

(
s(k)
)

end if
end for

end procedure
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Algorithm 18 Modified version of algorithm 7 with dropout regularization.

procedure AdjustGradientWithDropout(y)
for j ← 1 to nL do

d
(L)
j ←

(
yj − a

(L)
j

)
· f (L)

j

′ (
s
(L)
j

)
for i← 0 to nL−1 do

∇C(L)
j,i ← ∇C

(L)
j,i + d

(L)
j · a(L−1)

i

end for
end for
for k ← L− 1 to 1 do

for j ← 1 to nk do

if r
(k)
j > 0 then

d
(k)
j ← r

(k)
j ·

(∑nk+1

i=0 d
(k+1)
i · w(k+1)

i,j

)
· f (k)

j

′ (
s
(k)
j

)
for i← 0 to nk−1 do

∇C(k)
j,i ← ∇C

(k)
j,i + d

(k)
j · a(k−1)

i

end for
else

d
(k)
j ← 0

end if
end for

end for
end procedure

Algorithm 19 Algorithm 18 with matrix-vector notation.

procedure AdjustGradientWithDropout(y)

d(L) ←
(
y − a(L)

)
⊙ f (L)′ (s(L)

)
∇C(L) ← ∇C(L) + d(L)

(
a(L−1)

)T
▷ matrix multiplication

for k ← L− 1 to 1 do

d(k) ← r(k) ⊙
((

W(k+1)
)T

d(k+1)
)
⊙ f (k)

′ (
s(k)
)

∇C(k) ← ∇C(k) + d(k)
(
a(k−1)

)T
▷ matrix multiplication

end for
end procedure
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4.4 Optimizers

4.4.1 Momentum (inertia)

This technique can sometimes speed up the learning process, and help with preventing the algorithm
getting stuck in local minima. The idea is to smoothen the direction changes of the gradient descent
algorithm, so that when a new gradient is calculated for a new training batch, the algorithm keeps
moving towards the previous gradient to some degree as well. One way to achieve this is to store the
gradient vector before clearing it for the new batch, and calculate a weighted average of the previous
and the new gradient in the ApplyGradient procedure (algorithm 9, 10) before modifying the weights.

With β ∈ R, 0 ≤ β < 1 denoting the amount to keep from the previous gradient (usually chosen
to be close to 1, e.g. 0.8, 0.9, or even 0.99), algorithm 20 is a modification of algorithm 4 and 9 with
momentum.

Algorithm 20 Modified version of algorithm 4 and 9 with momentum.

procedure ClearGradient
for k ← 1 to L do

for j ← 1 to nk do
for i← 0 to nk−1 do

∇C(k)
j,i

prev
← ∇C(k)

j,i

∇C(k)
j,i ← 0

end for
end for

end for
end procedure
procedure ApplyGradient(α)

for k ← 1 to L do
for j ← 1 to nk do

for i← 0 to nk−1 do

∇C(k)
j,i ← β · ∇C(k)

j,i

prev
+ (1− β) · ∇C(k)

j,i

w
(k)
j,i ← w

(k)
j,i − α · ∇C(k)

j,i

end for
end for

end for
end procedure

Algorithm 21 Algorithm 20 with matrix-vector notation.

procedure ClearGradient
for k ← 1 to L do
∇C(k)prev ← ∇C(k)

∇C(k) ← 0
end for

end procedure
procedure ApplyGradient(α, β)

for k ← 1 to L do
∇C(k) ← β · ∇C(k)prev + (1− β) · ∇C(k)

W(k) ←W(k) − α · ∇C(k)

end for
end procedure
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4.4.2 RMSProp (Root Mean Squared Propagation)

Similarly to the Momentum optimizer (4.4.1), the goal of RMSProp is to smoothen the zig-zag path
of the mini-batch gradient descent. The idea is to adjust the learning rate based on the current and
the previous values of the gradient: small weight adjustments will be scaled up in order to speed up
convergence, large weight adjustments will be decreased in order to prevent overshooting.

Algorithm 22 is the modification of algorithm 2 and 9 with RMSProp. The β ∈ R, 0 ≤ β < 1
parameter is called the ”decay rate”, and it is usually set to be around 0.9 or 0.999. The purpose of
the 0 < ε ∈ R parameter is to avoid division by zero, and to prevent floating point rounding errors
from making the computation numerically unstable; its value is usually chosen to be around 10−6 or
10−8.

Algorithm 22 Modified version of algorithm 2 and 9 with RMSProp.

procedure Initialize
for k ← 0 to L do

a
(k)
0 ← 1

d
(k)
0 ← 1

end for
for k ← 1 to L do

for i← 0 to nk−1 do

w
(k)
0,i ← 1

for j ← 1 to nk do

w
(k)
j,i ← random number

S
(k)
j,i ← 0

∇C(k)
j,i ← 0

end for
end for

end for
end procedure
procedure ApplyGradient(α, β, ε)

for k ← 1 to L do
for j ← 1 to nk do

for i← 0 to nk−1 do

S
(k)
j,i ← β · S(k)

j,i + (1− β) ·
(
∇C(k)

j,i

)2
w

(k)
j,i ← w

(k)
j,i − α√

S
(k)
j,i +ε

· ∇C(k)
j,i

end for
end for

end for
end procedure

4.4.3 Adam (ADAptive Moment estimation)

The Adam optimizer combines the advantages of the Momentum optimizer (4.4.1) and the RMSProp
optimizer (4.4.2) by doing both at the same time.

Algorithm 23 shows a variation of algorithm 9 with Adam optimizer. The Initialize procedure is
the same as in algorithm 22, and the ClearGradient procedure is the same as in 20.

The 0 < ε ∈ R parameter is the same as in algorithm 22, and the β1, β2 ∈ R, 0 ≤ β1, β2 < 1
parameters are chosen similarly to the ones in the case of the Momentum optimizer (4.4.1) and the
RMSProp optimizer (4.4.2) respectively.
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Algorithm 23 Modified version of algorithm 9 with Adam optimizer.

procedure ApplyGradient(α, β1, β2, ε)
for k ← 1 to L do

for j ← 1 to nk do
for i← 0 to nk−1 do

S
(k)
j,i ← β2 · S(k)

j,i + (1− β2) ·
(
∇C(k)

j,i

)2
▷ RMSProp

∇C(k)
j,i ← β1 · ∇C(k)

j,i

prev
+ (1− β1) · ∇C(k)

j,i ▷ Momentum

w
(k)
j,i ← w

(k)
j,i − α√

S
(k)
j,i +ε

· ∇C(k)
j,i

end for
end for

end for
end procedure

5 Advanced topics

5.1 Preprocessing

Depending on several factors (e.g. the problem at hand, the choice of activation functions, the format
and the interpretation of the input and output data, numerical considerations, etc.), various kinds of
preprocessing can significantly improve the network’s performance.

5.1.1 Statistical methods

For x ∈ R, when x is sufficiently far from 0, most of the activation functions (3.1.1) behave linearly in
the sense that for 0 < c ∈ R, f(c · x) = c · f(x). This implies that if the entire input of the network is
scaled by a factor of c, then its output will also be scaled by the same amount. If the expected output
remains fixed, then this scaling effect will be compensated by the training process by introducing a
scaling factor of 1

c into the weights and biases in the network. It will also be reflected in the gradient,
thus, it will affect the optimal choice of the learning rate as well. If the network has to do too much
of this compensation, then it will be more suspectible to issues like the ”vanishing gradient problem”
where the gradient becomes so small for most inputs that basically no learning occurs. This, together
with floating point arithmetics considerations in practical implementations, suggests that in most
cases, it can be beneficial to bring the network’s input closer to the [0, 1] or the [−1, 1] intervals.

5.1.1.1 Normalization Let u, l ∈ R (typically, l = 1 and u ∈ {−1, 0}), and let:

xmin = min {xi : (x,y) ∈ trainers, i ∈ {1, 2, . . . , n0}}
xmax = max {xi : (x,y) ∈ trainers, i ∈ {1, 2, . . . , n0}}

Note that only the trainers set is used from algorithm 11 for determining these values, since we
don’t want any information to be leaked into the training process from the validation set.

Before the network is evaluated for a given x input, it is first transformed with the following
formula (for j ∈ {1, 2, . . . , n0}):

x̂j =
xj − xmin

xmax − xmin
· (u− l) + l for j ∈ {1, 2, . . . , n0}

Note: if the input is composed from heterogeneous features from different ranges, then it might be
a good idea to normalize them separately or by feature groups. For j ∈ {1, 2, . . . , n0} and uj , lj ∈ R,
let
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xj min = min {xj : (x,y) ∈ trainers}
xj max = max {xj : (x,y) ∈ trainers}

Then

x̂j =
xj − xj min

xj max − xj min
· (uj − lj) + lj

5.1.1.2 Standardization For the analysis of statistical data, the exact value of its samples, its
mean, and its deviation from the mean are often less important than the shape of its distribution.
Standardization is a technique which brings statistical data into a single well defined location on the
number line so that its distribution can be analyzed in well defined circumstances.

Standardization requires the mean and the standard deviation of the theoretical distribution to be
known, but this is rarely the case in practice, so their estimated values are used instead. Let N ∈ N+

denote the number of examples in the training set:

µ =
1

N · n0
·

∑
x∈training

n0∑
i=0

xi

σ =

√√√√ 1

N · n0 − 1
·

∑
x∈training

n0∑
i=0

(xi − µ)
2

Then, before the network is evaluated for a given x input, x is first transformed with the following
formula (for j ∈ {1, 2, . . . , n0}):

x̂j =
xj − µ

σ

Again, if the input is composed of heterogeneous features with different ranges and distributions,
then standardization is also better performed separately for the different features (or feature groups).
For j ∈ {1, 2, . . . , n0}:

µj =
1

N
·

∑
x∈training

xj

σj =

√
1

N − 1
·

∑
x∈training

(xj − µ)
2

x̂j =
xj − µj

σj

5.1.1.3 Batch normalization TODO
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5.2 Convolutional Neural Networks

TODO
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5.3 Recurrent Neural Networks

TODO
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A Prerequisites and notation

Here’s a quick recap of the calculus and linear algebra that is necessary for neural networks. For
more precise definitions and the proofs of the theorems that are stated here without one, refer to any
calculus and linear algebra textbook.

A.1 The set of natural numbers: N,N+

N = {0, 1, 2, . . .} and N+ = {1, 2, . . .}

A.2 The set of integer numbers: Z
Z = {. . . ,−2,−1, 0, 1, 2, . . .}

A.3 The set of real numbers: R
Denoted by R. For a precise definition, refer to any calculus textbook. The gist of it is that R is the
number line, and it doesn’t have any gaps and discontinuities.

A.4 Element in a set: x ∈ R
x ∈ R means x is a real number.

A.5 Subset: A ⊂ B

If A and B are sets, then A is a subset of B if and only if for all x ∈ A it holds that x ∈ B. Notation:
A ⊂ B.

A.6 Intersection: A ∩B

If A and B are sets, then the intersection of A and B is a set which contains all elements of A that
are also an element of B. Formally:

A ∩B = {x : x ∈ A and x ∈ B}

A.7 Interval: [a, b], (a, b), [a, b), (a, b]

A subset of the R that contains all real numbers lying between its two endpoints. For a, b ∈ R, a ≤ b:

� Open interval:

(a, b) = {x : x ∈ R and a < x < b}

If a = b, then (a, b) is the empty set.

� Closed interval:

[a, b] = {x : x ∈ R and a ≤ x ≤ b}

If a = b, then [a, b] contains only a single number, a.
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� Half-open intervals:

(a, b] = {x : x ∈ R and a < x ≤ b}
[a, b) = {x : x ∈ R and a ≤ x < b}

� Special intervals:

(−∞, b) = {x : x ∈ R and x < b}
(a,+∞) = {x : x ∈ R and a < x}
(−∞, b] = {x : x ∈ R and x ≤ b}
[a,+∞) = {x : x ∈ R and a ≤ x}

(−∞,+∞) = R

A.8 Cartesian product of sets: A×B, An

If A and B are sets, then A×B is a set which contains all possible pairings of an element from A and
another one from B (in that order):

A×B = {(a, b) : a ∈ A and b ∈ B}

This can be extended to any number of sets, to produce n-tuples of any length. For a given
n ∈ N, 1 < n, let A1, A2, . . . , An be sets. Then:

A1 ×A2 × · · · ×An = {(a1, a2, . . . , an) : a1 ∈ A1 and a2 ∈ A2 and . . . and an ∈ An}

Specifically, if A = A1 = A2 = · · · = An in the above example, then An is a shorthand notation
for A1 ×A2 × · · · ×An, ie. the set of all n-tuples that can be constructed from the elements of A.

A.9 Vector: x ∈ Rn

For n ∈ N+, a ∈ Rn is an n-dimensional vector that contains the ai ∈ R numbers (for n ≥ i ∈ N+),
ie. a list of numbers:

a = [ai]
n
i=1 =


a1
a2
...
an


Notes:

� A vector can be thought of as a point in an n-dimensional space.

� An n-tuple of real numbers and an n-dimensional real vector are basically the same thing; n-
tuples focus more on set theory, while vectors put more emphasis on the geometrical, linear
algebra interpretation.
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� 0 ∈ Rn denotes the vector in which all components are zero (called a ”null vector” or a ”zero
vector”):

0 = [0]
n
i=1 =


0
0
...
0


A.10 Function: f : X → Y

Let X,Y be sets, and f ⊂ X × Y . This f is called a function if and only if for all x ∈ X, if there
exists y, z ∈ Y such that (x, y) ∈ f and (x, z) ∈ f , then y = z. In other words, a function associates
either no element from Y to an element of X, or exactly one, but never two or more.

Notation: f : X → Y — f is a function that maps some or all elements of X to Y .
Note: a function which maps elements to natural numbers is called a sequence, e.g. f : N+ → R.

A.10.1 Value of a function at a point: f(x)

If for a given x ∈ X, a y ∈ Y exists such that (x, y) ∈ f , then y is called the value of f at x.
Notation: f(x) = y.

A.10.2 Domain of a function: Df

Df denotes the domain of the f function, ie. the set which contains all elements for which f is defined
and nothing else:

Df = {x : x ∈ X and there exists y ∈ Y so that (x, y) ∈ f}

A.10.3 Image of a function: Rf

Rf denotes the image of the function, ie. the set which contains all elements that are mapped to some
x ∈ Df and nothing else. Formally:

Rf = {f(x) : x ∈ Df}

A.10.4 Multivariable, real-valued function: f : Rn → R

For n ∈ N+, let f : Rn → R be a function. Such a function maps n-tuples of real numbers to a single
real number.

A.10.5 Value of a multivariable, real-valued function at a point: f(x), f(x1, x2, . . . , xn)

If for a given x ∈ Rn, a y ∈ R exists such that (x1, x2, . . . , xn, y) ∈ f , then y is called the value of f
at x.

Notation: f(x) = f(x1, x2, . . . , xn) = y.

A.11 Identity function: id

id : R→ R — id is a function that maps real numbers to themselves:

id(x) = x
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A.12 Commutativity

For all x, y ∈ R:

x+ y = y + x

A.13 Summation:
∑n

i=1 ai

For n ∈ N+ and a ∈ Rn:

n∑
i=1

ai = a1 + a2 + . . .+ an

By convention, if n = 1 then

1∑
i=1

ai = a1

A.14 Distributivity: c ·
∑n

i=1 ai

For n ∈ N+ and a ∈ Rn and c ∈ R:

c ·
n∑

i=1

ai =

n∑
i=1

c · ai

A.15 Product of many numbers:
∏n

i=1 ai

For n ∈ N+ and a ∈ Rn:

n∏
i=1

ai = a1 · a2 · . . . · an

By convention, if n = 1 then

1∏
i=1

ai = a1

A.16 Sum and scaling of vectors: α · a+ β · b
For n ∈ N+ and a,b ∈ Rn, and α, β ∈ R:

α · a+ β · b = [α · ai + β · bi]ni=1 =


α · a1 + β · b1
α · a2 + β · b2

...
α · an + β · bn


A.17 Dot product of two vectors: a · b
For n ∈ N+ and a,b ∈ Rn:

a · b =

n∑
i=1

ai · bi
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A.18 Hadamard product of two vectors: a⊙ b

For n ∈ N+ and a,b ∈ Rn:

a⊙ b = [ai · bi]ni=1 =


a1 · b1
a2 · b2

...
an · bn


A.19 Matrix: W ∈ Rn×m

For n,m ∈ N+ and i, j ∈ N+, i ≤ n, j ≤ m, W ∈ Rn×m is called a ”matrix” which contains the
numbers wi,j ∈ R. In other words, W is a list of lists of numbers, arranged in a table that has n rows
and m columns:

W =


w1,1, w1,2, . . . , w1,m

w2,1, w2,2, . . . , w2,m

...
...

...
wn,1, wn,2, . . . , wn,m


Notes:

� Rows and columns may be indexed starting from 0 instead of 1 as well.

� Individual rows and columns of a matrix may be notated by replacing the varying index with
an asterisk. Wi,∗ means the i-th row vector of the W matrix, and W∗,j means the j-th column
vector.

� When n = 1, then W may be called a ”row vector” (since the matrix has only one row), and
when m = 1, then W may be called a ”column vector” (since the matrix has only one column).

� An x ∈ Rn vector can be thought of as a matrix from Rn×1.

� 0 ∈ Rn×m denotes the matrix in which all components are zero, and is called a ”null matrix” or
a ”zero matrix”. (The difference between a null vector and a null matrix is usually clear from
the context.)

0 =


0, 0, . . . , 0
0, 0, . . . , 0
...

...
...

0, 0, . . . , 0


A.20 Transpose of a matrix: WT

Let W ∈ Rn×m be a matrix for n,m ∈ N+. The transpose of W is the WT ∈ Rm×n matrix, where
rows and columns switch roles like this:

WT =


w1,1, w2,1, . . . , wm,1

w1,2, w2,2, . . . , wm,2

...
...

...
w1,n, w2,n, . . . , wm,n
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A.21 Product of a matrix and a vector: W · a
For n,m ∈ N+ and W ∈ Rn×m and a ∈ Rm, the product of the W matrix and the a vector is the
following vector (W · a ∈ Rn):

W · a =

 m∑
j=1

wi,j · aj

n

i=1

=


w1,1 · a1 + w1,2 · a2 + . . . + w1,m · am
w2,1 · a1 + w2,2 · a2 + . . . + w2,m · am

...
wn,1 · a1 + wn,2 · a2 + . . . + wn,m · am


Note: multiplying a matrix and a vector can have geometrical interpretations, e.g. rotations,

reflections, and other linear transformations of a point in a space are often represented as a matrix-
vector multiplication.

A.22 Sum and scaling of matrices: α ·A+ β ·B
Let A,B ∈ Rn×m be two matrices for m,n ∈ N+, and let α, β ∈ R be two real numbers.

α ·A+ β ·B =


α · a1,1 + β · b1,1, α · a2,1 + β · b2,1, . . . , α · am,1 + β · bm,1

α · a1,2 + β · b1,2, α · a2,2 + β · b2,2, . . . , α · am,2 + β · bm,2

...
...

...
α · a1,n + β · b1,n, α · a2,n + β · b2,n, . . . , α · am,n + β · bm,n


A.23 Matrix multiplication: AB

For n,m, p ∈ N+, let A ∈ Rn×m and B ∈ Rm×p be two matrices. The product of A and B is the
AB ∈ Rn×p matrix where the i-th element in the j-th column (for n ≥ i ∈ N+ and p ≥ j ∈ N+) is
the dot product of the i-th row of A and the j-th column of B:

AB =


A1,∗ ·B∗,1, A1,∗ ·B∗,2, . . . , A1,∗ ·B∗,p,
A2,∗ ·B∗,1, A2,∗ ·B∗,2, . . . , A2,∗ ·B∗,p,

...
...

...
An,∗ ·B∗,1, An,∗ ·B∗,2, . . . , An,∗ ·B∗,p



=


∑m

k=1 a1,k · bk,1,
∑m

k=1 a1,k · bk,2, . . . ,
∑m

k=1 a1,k · bk,p∑m
k=1 a2,k · bk,1,

∑m
k=1 a2,k · bk,2, . . . ,

∑m
k=1 a2,k · bk,p

...
...

...∑m
k=1 an,k · bk,1,

∑m
k=1 an,k · bk,2, . . . ,

∑m
k=1 an,k · bk,p


A.24 Hadamard product of two matrices: A⊙B

For n,m ∈ N+, let A,B ∈ Rn×m be two matrices of the same dimensions. The Hadamard product
of A and B is the A⊙B ∈ Rn×m matrix which contains the element-wise product of the elements of
the two matrices:

A⊙B =


a1,1 · b1,1, a1,2 · b1,2, . . . , a1,m · b1,m
a2,1 · b2,1, a2,2 · a2,2, . . . , a2,m · b2,m

...
...

...
an,1 · bn,1, an,2 · bn,2, . . . , an,m · bn,m
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A.25 Square of a number: x2

For x ∈ R, x2 = x · x is called ”x squared”, ie. the area of a square that has a side length of x.

A.26 Square of a function: f 2(x)

Let f ∈ R→ R be a function. Then f2 ∈ R→ R is also function, and for all x ∈ Df :

f2(x) = (f(x))
2

A.27 Square root of a number:
√
x, x

1
2

For x ∈ R,
√
x is called the ”square root of x”, ie. the numbers which give x when they are multiplied

by themselves. In this document, we only care about the cases where x ≥ 0, and we only consider the
non-negative square root.

Note:
√
x can also be written as x

1
2 .

A.28 Absolute value: |x|
For x ∈ R:

|x| =

{
x if x ≥ 0

−x if x < 0

A.29 Norm of a vector: ∥x∥
For n ∈ N+, if δ ∈ Rn → R is a real-valued function, then δ is a norm if it has all of the following
properties for all x,y ∈ Rn and α ∈ R:

� δ(x) ≥ 0.

� δ(x) = 0 if and only if xj = 0 for all n ≥ j ∈ N+.

� δ(α · x) = |α| · δ(x).

� Triangle inequality: δ(x+ y) ≤ δ(x) + δ(y).

Note: a norm can also be called the ”length” of a vector, and for a given δ norm, δ(x− y) can be
called the ”distance” of x and y.

A.29.1 L1 norm: ∥x∥1
For n ∈ N+ and x ∈ Rn:

∥x∥1 =

n∑
i=1

|xi|

A.29.2 L2 norm, Euclidean norm: ∥x∥2
For n ∈ N+ and x ∈ Rn:

∥x∥2 =

√√√√ n∑
i=1

x2
i

Note: without context, the ”length” of a vector usually means its Euclidean norm.
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A.30 Minimum and maximum of a function

If n ∈ N+ and f : Rn → R is a function, and a ∈ Df , then:

A.30.1 Global minimum

If for all x ∈ Df , the f(a) ≤ f(x) inequality holds, then f has a global minimum at a.

A.30.2 Global maximum

If for all x ∈ Df , the f(a) ≥ f(x) inequality holds, then f has a global maximum at a.

A.30.3 Local minimum

If there exists a 0 < ε ∈ R such that for all x ∈ Df where the ∥a−x∥ < ε inequality holds, f(a) ≤ f(x),
then f has a local minimum at a.

In other words: if f(a) ≤ f(x) for all x ∈ Df that is ”close to” (but not equal to) a, then f has a
local minimum at a.

Note: a global minimum is also a local minimum.

A.30.4 Local maximum

If there exists a 0 < ε ∈ R such that for all x ∈ Df where the ∥a−x∥ < ε inequality holds, f(a) ≥ f(x),
then f has a local maximum at a.

In other words: if f(a) ≥ f(x) for all x ∈ Df that is ”close to” (but not equal to) a, then f has a
local maximum at a.

Note: a global maximum is also a local maximum.

A.31 Integer power of a number: xk

For x ∈ R and k ∈ N+ the k-th power of x:

xk =

k∏
i=1

x

And the −k-th power of x if x ̸= 0:

x−k =
1

xk

By convention, x0 = 1.

A.32 Factorial: n!

For n ∈ N+, the factorial of n is the product of the natural numbers between 1 and n:

n! =

n∏
i=1

i = 1 · 2 · . . . · n

By convention, 0! = 1.
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A.33 Limit of a single variable real-valued function: limx→c f(x)

Let f : R → R be a function, and c, L ∈ R be real numbers. The limit of f at the point c is L if
and only if for all 0 < ε ∈ R, there exists 0 < δ ∈ R such that for any x ∈ R which satisfies the
0 < |x− c| < δ inequality, it holds that |f(x)− L| < ε.

(Less precisely: the limit of f at c is L if and only if f maps all numbers that are close to c to a
number which is close to L.)

Notation:

lim
x→c

f(x) = L

A.34 Limit of a real number sequence: limn→∞ ai

The a : N+ → R function defines a sequence of real numbers. Instead of a(1), a(2), a(3), . . ., a
sequence is usually written as (a1, a2, a3, . . .).

If Da = N+, and an L ∈ R exists such that for any 0 < ε ∈ R, there exists N ∈ N+ so that for all
N < n ∈ N+, the |an − L| < ε inequality holds, then the sequence is called ”convergent”, and L is
said to be its limit. Otherwise the sequence is called ”divergent”.

Notation:

lim
n→∞

ai = L

A.35 Sum of infinite series:
∑∞

i=1 ai

Let a : N+ → R be a sequence for which Da = N+. The following summation is called an ”infinite
series”:

∞∑
i=1

ai = a1 + a2 + a3 + . . .

For a given n ∈ N+, the n-th partial sum of the series is the sum of the first n elements of the
sequence:

n∑
i=1

ai

If the limit of the n-th partial sums exists as n tends to infinity, then this limit is said to be the
sum of the series, and the series is called ”convergent”:

∞∑
i=1

ai = lim
n→∞

n∑
i=1

ai

Otherwise the series is called ”divergent”.
Note: the definition of convergence means that above a certain index, all elements in the series are

closer to the limit than a certain error threshold 0 < ε ∈ R. Since practical computational problems
rarely require precision above a certain error threshold (and computers with their finite memories
are unable to represent arbitrary real numbers without some non-zero error anyway), when the value
of a constant or a function is needed that is specified in terms of an infinite series, then it’s usually
enough to calculate a partial sum for a sufficiently large n ∈ N+ index which brings the error below
the desired threshold.
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A.36 Euler’s constant: e

e =

∞∑
i=0

1

n!
=

1

1
+

1

1
+

1

1 · 2
+

1

1 · 2 · 3
+ . . . ≈ 2.71828

A.37 Exponential function: ex

For x ∈ R:

exp(x) = ex =

∞∑
k=0

xk

k!

Note: for all x, y ∈ R:

ex · ey = ex+y

(ex)
y
= ex·y

A.38 Natural logarithm: ln(x)

For 0 < x ∈ R, ln(x) is the natural logarithm of x, which is the inverse of the exponential function:

eln(x) = x

A.39 Real power of a number: αx

For x ∈ R and 0 < α ∈ R:

αx =
(
eln(α)

)x
= eln(α)·x

Note: for all x, y ∈ R:

αx · αy = αx+y

(αx)
y
= αx·y

α
1
2 =
√
α

A.40 Differentiation

A.40.1 Differentiation of single variable, real-valued functions: f ′(a), d
dxf(a),

df
dx (a), f ′,

d
dxf ,

df
dx

Let f : R→ R be a function and a ∈ Df . The f function is differentiable at the point a if an I ⊂ Df

non-empty open interval and an L ∈ R number exist such that a ∈ I and

lim
h→0

f(a+ h)− f(a)

h
= L

In other words, f is differentiable if for all 0 < ε ∈ R, there exists 0 < δ ∈ R such that for every
0 ̸= h ∈ R which satisfies the |h| < δ inequality, a+ h ∈ Df , and∣∣∣∣L− f(a+ h)− f(a)

h

∣∣∣∣ < ε
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If f is differentiable at a, ie. the limit L exists, then L is called the ”derivative of f at a”, and it
is denoted as f ′(a) = L (read: ”f prime of a”).

Alternative notations (Leibniz):

f ′(a) =
df

dx
(a) =

d

dx
f(a)

If f is differentiable for all a ∈ Df , then f is differentiable, and its derivative is f ′ (or d
dxf).

An example of a function which is not differentiable on the entirety of its domain is the abs : R→
R, abs(x) = |x| function, because it is not differentiable at a = 0: the abs(0+h)−abs(0)

h expression yields
−1 for all 0 > h ∈ R, but it yields +1 for all 0 < h ∈ R, therefore the single limit that the definition
requires does not exist at 0. However, abs(x) is differentiable everywhere on both the (−∞, 0) and
the (0,+∞) intervals.

A.40.1.1 Practical applications There are several practical applications of the derivative. Ex-
amples include:

� Momentary speed: in physics, if the distance that is covered by some object from a starting
point during t ∈ R seconds is given by the s : R → R function, then the average velocity for

this journey can be calculated as v = s(t)
t , but the momentary velocity (that is shown on the

object’s speed meter at a given moment) is given by s′(t).

� Optimization: f ′(a) tells the slope of the tangent line to the graph of f at the point a, as shown
on figure 13 in A.40.1.3. In other words, f ′(a) tells how fast the function increases or decreases
near the point a. This is useful for finding local minima and maxima of a function (in other
words: to optimize the thing that is modeled by the function), because at such points, the
derivative of the function is 0. However, generally it doesn’t necessarily mean that whenever
the derivative is 0, then there’s a local minimum or maximum — to find out if a point is a local
extremum, further tests need to be performed, e.g. by checking the second derivative (which is
the derivative of the derivative if that exists). Finding the global minima and maxima can often
be done by finding all the local minima and maxima, and then selecting the global extrema
among those.

A.40.1.2 Properties Let f, g : R → R be two differentiable functions and let α, β ∈ R be two
real numbers, and let z ∈ Z be an integer.

A.40.1.2.1 Derivative of constant If for all x ∈ Df it holds that f(x) = α, then f ′(x) = 0.

A.40.1.2.2 Derivatives of powers: (xz)
′

For all x ∈ R:

(xz)
′
= z · xz−1

A.40.1.2.3 Derivative of ex For all x ∈ R:

(ex)
′
= ex

A.40.1.2.4 Derivative of αx If α > 0, then for all x ∈ R:

(αx)
′
= αx · ln(α)
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A.40.1.2.5 Derivative of ln(x) For all 0 < x ∈ R:

ln(x)′ =
1

x

A.40.1.2.6 Linearity: (α · f(x)± β · g(x))′ For all x ∈ Df ∩ Dg:

(α · f(x)± β · g(x))′ = α · f ′(x)± β · g′(x)

A.40.1.2.7 Product rule: (f(x) · g(x))′ For all x ∈ Df ∩ Dg:

(f(x) · g(x))′ = f ′(x) · g(x) + f(x) · g′(x)

A.40.1.2.8 Quotient rule:
(

f(x)
g(x)

)′
For all x ∈ Df ∩ Dg where g(x) ̸= 0:(

f(x)

g(x)

)′

=
f ′(x) · g(x)− f(x) · g′(x)

g(x)2

A.40.1.2.9 Chain rule: (f(g(x)))′ For all x ∈ Dg where g(x) ∈ Df :

(f(g(x)))′ = f ′(g(x)) · g′(x)

A.40.1.3 Example Consider the following function:

f :R→ R
f(x) =(x+ 1)3 − (x− 1)2 − 12 · x

Its graph is shown on figure 13.

−3 −2 −1 1 2 3

−10

10

20

30

Figure 13: Graph of the f(x) = (x+ 1)3 − (x− 1)2 − 12 · x function from example A.40.1.3, with its
tangent lines at x = −1.6, at x = − 7

3 , and at x = 1.23. The slopes of the tangent lines are given by
f ′(−1.6), f ′(− 7

3 ), and f ′(1.23) respectively. The function has a local maximum at x = − 7
3 , so the

tangent line there is horizontal, ie. its slope is 0, ie. f ′(− 7
3 ) = 0.

This function is differentiable on the entire R (proof left for the reader). A step by step calculation
of its derivative:
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f ′(x) =
(
(x+ 1)3 − (x− 1)2 − 12 · x

)′
=
(
(x+ 1)3 − (x− 1)2

)′ − (12 · x)′

=
(
(x+ 1)3

)′ − ((x− 1)2
)′ − (12 · x)′

=
(
(x+ 1)3

)′ − ((x− 1)2
)′ − 12 · (x)′

=
(
3 · (x+ 1)2 · (x+ 1)′

)
− (2 · (x− 1) · (x− 1)′)− 12 · 1

=
(
3 · (x+ 1)2 · ((x)′ + (1)′)

)
− (2 · (x− 1) · ((x)′ − (1)′))− 12

=
(
3 · (x+ 1)2 · (1 + 0)

)
− (2 · (x− 1) · (1− 0))− 12

=
(
3 · (x+ 1)2 · 1

)
− (2 · (x− 1) · 1)− 12

= 3 · (x+ 1)2 − 2 · (x− 1)− 12

A.40.2 Partial derivatives of multivariable, real-valued functions: ∂
∂xi

f(a), ∂f
∂xi

(a), ∂
∂xi

f ,
∂f
∂xi

For n ∈ N+, let f : Rn → R be a function which maps vectors from Rn to real numbers.
For n ≥ i ∈ N+, the partial derivative of f in the direction xi at a is the following limit:

∂

∂xi
f(a) = lim

h→0

f(a1, a2, . . . , ai + h, . . . , an)− f(a1, a2, . . . , ai, . . . , an)

h
(30)

Note: ∂
∂xi

f(a) can also be written as ∂f
∂xi

(a), and ∂f
∂xi

: Rn → R can be thought of as a function in
its own right.

The practical use of partial derivatives is that ∂
∂xi

f(a) tells the slope of the tangent line to the
graph of f at a along the axis that corresponds to the xi variable, similarly to the single variable case.
(Figure 14 in A.40.2.2 shows what this means for the n = 2 case.)

Since all the numbers in the expression in equation 30 are constants except for ai, the expression
can be treated just like a single variable function, and so the partial derivatives can be calculated the
exact same way, with the exact same rules. In other words, if we define the g : R→ R single variable
function for a given a ∈ Rn and n ≥ i ∈ N+ as g(x) = f(a1, a2, . . . , x, . . . , an) with x being the i-th
parameter of f , then ∂

∂xi
f(a) = g′(ai).

A.40.2.1 Gradient vector: ∇f(a) For a given a ∈ Rn vector, if all the partial derivatives ∂
∂xi

(for n ≥ i ∈ N+) of f are defined at a, then the gradient of f at a is the following vector (∇f(a) ∈ Rn):

∇f(a) =
[

∂

∂xi
f(a)

]n
i=1

=


∂

∂x1
f(a)

∂
∂x2

f(a)
...

∂
∂xn

f(a)


A.40.2.2 Example Consider the following function:

f :R2 → R

f(x1, x2) =
1

50
·
(
(x1 − 1)3 − 5 · x 2

2

)
+ 3
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Its graph is a 3-dimensional surface, as shown on figure 14, because this function can be thought
of as if it assigned a height value for each point of a 2-dimensional plane.

For example, the height of the surface above the a =

[
3
1

]
∈ R2 point on the plane is f(3, 1) =

1
50 ·

(
(3− 1)3 − 5 · 12

)
+ 3 = 3.06.

−5

5
−5

5

5

Figure 14: Graph of the f : R2 → R, f(x1, x2) =
1
50 ·
(
(x1 − 1)3 − 5 · x 2

2

)
+3 function, and its tangent

lines at a =

[
3
1

]
, parallel with the x1 and x2 axis, as given by ∇f(a).

The partial derivatives exist for both of its variables. (Proof left for the reader.)
If we slice this surface along the x2 = 1 line which lies on the plane (this line is parallel to the x1

axis), then we get the first graph that is shown on figure 15, and ∂
∂x1

f(3, 1) will tell the slope of the
tangent line to this graph at the x1 = 3 point. In other words, if we define the g : R → R function
as g(x1) = f(x1, a2) = 1

50 ·
(
(x1 − 1)3 − 5 · 12

)
+ 3, then g can be differentiated as a single variable

function, and ∂
∂x1

f(a) = g′(a1).
Similarly, slicing this function along the x1 = 3 line (which is parallel to the x2 axis) gives the

second graph that is shown on figure 15, and ∂
∂x2

f(3, 1) will tell the slope of the tangent line to this
graph at the x2 = 1 point. In other words, if we define the h : R→ R function as h(x2) = f(a1, x2) =
1
50 ·

(
(3− 1)3 − 5 · x 2

2

)
+ 3, then h can be differentiated as a single variable function as well, and

∂
∂x2

f(a) = h′(a2).

−6 −4 −2 2 4 6

−2

2

4

−6 −4 −2 2 4 6

1

2

3

4

Figure 15: Graphs of the g(x1) = f(x1, a2) =
1
50 ·
(
(x1 − 1)3 − 5 · 12

)
+3 and the h(x2) = f(a1, x2) =

1
50 ·
(
(3− 1)3 − 5 · x 2

2

)
+3 slices of the f function, and the tangent lines of these slices at x1 = 3 and

at x2 = 1, as given by ∂
∂x1

f(3, 1) and ∂
∂x2

f(3, 1) respectively.
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Below is the calculation of the partial derivatives for the a =

[
3
1

]
point, step by step. We are going

to use the single value differentiation rules, and the fact that if α ∈ R is a constant, then (α− 1)3 and
5 · α2 are also constants, therefore their derivatives are 0.

∂

∂x1
f(x1, a2) =

(
1

50
·
(
(x1 − 1)3 − 5 · a 2

2

)
+ 3

)′

=

(
1

50
·
(
(x1 − 1)3 − 5 · a 2

2

))′

+ (3)′

=

(
1

50
·
(
(x1 − 1)3 − 5 · a 2

2

))′

+ 0

=

(
1

50
·
(
(x1 − 1)3 − 5 · a 2

2

))′

=
1

50
·
(
(x1 − 1)3 − 5 · a 2

2

)′
=

1

50
·
((

(x1 − 1)3
)′ − (5 · a 2

2

)′)
=

1

50
·
((

(x1 − 1)3
)′ − 0

)
=

1

50
·
(
(x1 − 1)3

)′
=

1

50
·
(
3 · (x1 − 1)2 · (x1 − 1)

′)
=

1

50
·
(
3 · (x1 − 1)2 · ((x1)

′ − (1)′)
)

=
1

50
·
(
3 · (x1 − 1)2 · (1− 0)

)
=

1

50
·
(
3 · (x1 − 1)2 · 1

)
=

3

50
· (x1 − 1)2

Now ∂
∂x2

f(a1, x2) with somewhat bigger steps:
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∂

∂x2
f(a1, x2) =

(
1

50
·
(
(a1 − 1)3 − 5 · x 2

2

)
+ 3

)′

=

(
1

50
·
(
(a1 − 1)3 − 5 · x 2

2

))′

+ (3)′

=
1

50
·
(
(a1 − 1)3 − 5 · x 2

2

)′
+ 0

=
1

50
·
((

(a1 − 1)3
)′ − (5 · x 2

2

)′)
=

1

50
·
(
0− 5 ·

(
x 2
2

)′)
=

1

50
· (−5) ·

(
x 2
2

)′
= − 1

10
·
(
2 · x2 · (x2)

′)
= − 1

10
· (2 · x2 · 1)

= −1

5
· x2

Therefore the gradient vector at the a =

[
3
1

]
∈ R2 point is:

∇f(a) =

[ ∂
∂x1

f(3, 1)

∂
∂x2

f(3, 1)

]
=

[
3
50 · (3− 1)2

− 1
5 · 1

]
=

[
6
25

− 1
5

]

Note: the math works the same way for more than 2 dimensions (n > 2), it’s just harder to
visualize.
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